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Deterministic diffusion in flower-shaped billiards
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We propose a flower-shaped billiard in order to study the irregular parameter dependence of chaotic normal
diffusion. Our model is an open system consisting of periodically distributed obstacles in the shape of a flower,
and it is strongly chaotic for almost all parameter values. We compute the parameter dependent diffusion
coefficient of this model from computer simulations and analyze its functional form using different schemes,
all generalizing the simple random walk approximation of Machta and Zwanzig. The improved methods we
use are based either on heuristic higher-order corrections to the simple random walk model, on lattice gas
simulation methods, or they start from a suitable Green-Kubo formula for diffusion. We show that dynamical
correlations, or memory effects, are of crucial importance in reproducing the precise parameter dependence of
the diffusion coefficent.
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[. INTRODUCTION the parameter was first reported in R&]. Here the analysis
by Machta and Zwanzig was refined by suggesting two

One of the central themes in the theory of nonequilibriummethods for systematically correcting their random walk ap-
statistical mechanics is to assess the importance of determiproximation. However, whether the numerically detected ir-
istic chaos for understanding transport processes such as diegularities in the diffusion coefficient were of a fractal na-
fusion[1,2]. Simple model systems appear to be most suitedure remains an open question. More recently, a third
for studying the detailed relation between microscopic chaogpproximation scheme was proposed by deriving a Green-
and macroscopic transport. Along this line of research, th&ubo formula that exactly generalizes the Machta-Zwanzig
parameter dependent diffusion coefficients of strongly chaapproximation[14]. Applying all these methods led to the
otic dynamical systems have been investigated for one- ancbonclusion that including long-term correlations, or memory
two-dimensional mapping$3—7], periodic Lorentz gases effects, was indispensable for reproducing the precise func-
[8], and billiards in an external fielt®]. That diffusion co- tional form of the parameter dependent diffusion coefficient
efficients can be fractal functions of control parameters wasor the standard periodic Lorentz gas.
first observed in a simple one-dimensional mapping general- One of the essential problems in the analysis of diffusion
izing a random walk on the ling5,6]. The origin of this in the standard periodic Lorentz gas is that the parameter
fractality may be attributed to the topological instability of range of normal diffusion is very limited. In this small re-
orbits under parameter variation, which affects the parametegion, the irregular behavior of the parameter dependent dif-
dependence of the diffusion coefficient in a nontrivial way.fusion coefficient shows up on very fine scales and appears
Based on the analysis of such simple systems, it was conjete be rather smooth within the range of precision available
tured that fractal diffusion coefficients are rather generic forfrom computer simulation§8,15]. Consequently, the ques-
low-dimensional fully chaotic dynamical systems exhibiting tion about the existence of a fractal diffusion coefficient is
some spatial periodicit{5,6]. Indeed, recently it was found very difficult to answer for this model. As the main reason
that in case of billiards in an external field the diffusion for this behavior, it might be suspected that the topological
coefficient again exhibits a highly irregular structdi€s. instability of the standard periodic Lorentz gas under param-

The standard periodic Lorentz gas is one of the typicakter variation is not strong enough to generate more pro-
models for studying deterministic normal diffusi¢gee, e.g., nounced irregularities in this region. The main purpose of
Refs.[1,2] and further references thergiThat it is strongly  this paper is therefore to propose a billiard without an exter-
chaotic and exhibits normal diffusion was proven by Buni-nal field, which is very similar to the standard periodic Lor-
movich and co-workerf10-12. Machta and Zwanzig have entz gas, but which has a geometry, and an associated range
calculated the diffusion coefficient of this model from com- of control parameters exhibiting normal diffusion, with
puter simulations at some parameter values, and they hawtronger topological instabilities. This way, we intend to
matched their results to a simple analytical random waldearn more about the emergence of possible fractal structures
approximatior{ 13]. That the diffusion coefficient in the stan- for diffusion coefficients in billiards. As we will show, our
dard periodic Lorentz gas is indeed a nontrivial function ofmodel indeed generates a considerably stronger irregular pa-
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rameter dependence of the diffusion coefficient than in the
standard Lorentz gas. By applying the set of approximation
methods mentioned above we argue that long-range dynami
cal correlations, or memory effects of orbits, are again at the
origin of this irregularity, as in the case of simple one- and
two-dimensional maps.

Our paper is composed of seven sections. In Sec. Il, we
introduce the flower-shaped billiard. Numerical results de-
picting the nontrivial parameter dependence of the diffusion
coefficient are shown in Sec. lll. In Secs. 1V, V, and VI, we
briefly review the different approaches to understanding the
parameter dependence of diffusion coefficients in determin-
istic dynamical systems, i.e., the Machta-Zwanzig approxi-
mation, Klages-Dellago correction methods, as well as the X
approach based on a suitable Green-Kubo formula for diffu- FIG. 1. The modified Lorentz gas as composed of a point par-

sion, and we apply them to the flower-shaped billiard. Sum'ticle moving freely in the spaces between the flower-shaped ob-

mary and conclusions are contained in Sec. VII. stacles, which scatters elastically with the obstacles. In our case,
massm=1 and velocityv=1. The quantities plotted here and in
Il. THE FLOWER-SHAPED BILLIARD the following figures are dimensionless.

The two-dimensional class of billiards we consider here o
consists of a point particle of massmoving in a plane such the general class of periodic Lorentz gases whose normal

that its Hamiltonian is diffusion has been proven by Bunimovich and co-workers

[10-12. The mixing property and the extension of such bil-
1 1 liards to higher-dimensional gases have been studied by

H= %DiJf ﬁpi, (1) Chernov[16]. As shown in Fig. 1, the space between the

obstacles forms the two-dimensional domain of the billiard,

wherex andy denote the Cartesian coordinates of the posi\vhere the paint particle moves freely and collides with the
tion in the plane, whilep, and p, are the corresponding OPstacles obeying the law of elastic reflection.

momenta. The point particle undergoes elastic collisions with A Single scatterer of our billiard is defined as follows.
obstacles that are fixed in the plane. All the obstacles havEirSt: we consider the inner hexagon whose vertices are on

the same shape, and their centers are situated on a triangufif Middle points of the sides of the hexagon of the elemen-
lattice according to tary Wigner-Seitz cell, as depicted by the dotted lines in Fig.

2. Next, we join six arcs that have the same radii and touch

Qc=mgl,+ncly, 2) the inner hexagon. Then we obtain the flower-shaped ob-
stacle shown in Fig. 2. Note that the radiusf one arc that

as defined in terms of the fundamental translation vectors afonsists in a petal of the flower-shaped obstacle can be
the triangular lattice, changed from 1/(43) to infinity. According to this con-

struction, the position space forms a two-dimensional torus.

€,=(0,1) (3 The motion of the point particle in the infinite lattice is un-

bounded so that transport by diffusionaspriori possible.

and Indeed, we will show that the diffusion of point particles in

23
62_ 2 2]’ (4)
wherem; andn, are integers.

If all the pairs of integers are selected, we fill the whole
triangular lattice with hard wall obstacles, and the billiard is
invariant under the group of spatial translations generated by
the vectors Eq(2). Accordingly, the whole lattice can be
mapped onto a so-called Wigner-Seitz cell with periodic
boundary conditions. The elementary Wigner-Seitz cell of
the triangular lattice is a hexagon of area

V3

Aws= €1 X €| = > 5

FIG. 2. Definition of a flower-shaped obstacle. The bigger hexa-
gon(bold lineg is the elementary Wigner-Seitz cell. The arc always
In this paper, we propose an open billiard consisting oftouches the smaller hexagddotted line$, which prohibits any

flower-shaped obstacles instead of disks, which belongs tmfinite horizon.

026211-2



DETERMINISTIC DIFFUSION IN FLOWER-SHAPED . . . PHYSICAL REVIEW BE6, 026211 (2002

the billiard of the flower-shaped obstacles is normal. When 0.16
the dynamics is reduced to the Wigner-Seitz cell, the position

of the particle inside this cell must be supplemented by a 0.12¢
lattice vector of the type of E(2) in order to determine the

actual position of the particle in the infinite lattice. This lat- [ 0.08¢
tice vector changes in discrete steps at each crossing of the 004
border of the elementary Wigner-Seitz cell. )

A billiard whose obstacles are disks, or, in higher dimen- oool— . . %
sions, spheres, is called a periodic Lorentz gas, and this 01 2 3 4 5 6 7
model serves as a typical example for studying deterministic K
diffusion [10-13,16,1F. The diffusion coefficient of this FIG. 3. Diffusion coefficienD (solid line) versus the curvature

standard periodic Lorentz gas has been studied in varioug of the petal of the flower-shaped obstacles. The diffusion coeffi-
ways both analytically and numerically, where recent workcient inceases approximately linearly for small enougtuntil it
focused particularly onto its density dependelsee Refs. reaches a global maximum. Inset: enlargement of the curve of the
[8,14] and further references thergirHowever, the density diffusion coefficient for large showing the irregularity of this

of this model cannot be varied much because of the condieurve on fine scales.

tion of a finite horizon, which prohibits collision-free ballis- L

tic motion and thus guarantees the existence of normal dif- .

fusion [10-12,18. Consequently, the diffusion coefficient D=tlma({q(t)—q(0)}2>, (@)
exists in a very limited range of parameters only, and

whether the diffusion coefficient of the standard periodicand according to this formula the diffusion coefficient was
Lorentz gas is a fractal function of the density of scatterergalculated from computer simulations in the flower-shaped

appears to be an open question. billiard, where the curvature of the petals is varied from 0
Let us introduce the Liouville equilibrium invariant mea- tg jts maximum, 4/3. The results are depicted in Fig. 3. In
sure given by this figure, we observe a nontrivial structure depending on

the curvaturex of the arc defining the petal of the flower-
dpe=1(x,y)8(H—E)dxdydpdpy, (6)  shaped obstacles.

The gross features of the curvature dependence for the
diffusion coefficient can qualitatively be explained as fol-
wherel (x,y) is the indicator function of the billiard domain, jows: When the curvature of the petal of the flower-shaped
andE is the energy of the point particle. Averages over thisphstacle is zero, the inner hexagon shown by the dotted lines
invariant measure are denoted py. This measure is nor- in Fig. 2 connects to the six hexagons surrounding it. In this
malizable for the reduced dynamics in an elementaryase the point particle remains forever localized in compact
Wigner-Seitz cell, where the area of the billiard domain takegjomains bounded by the three neighboring hexagons. For
a finite value. In this finite case, the Liouville invariant mea- thjs specific value of the control parameter, the motion of the
sure is a probability measure, which defines the microcanoniyint particle is completely predictable because the compact
Cal ensemble Of equ|l|br|um StatIStlca| meChan|CS. Thedomain iS an equ"atera' triang'e’ and the System iS inte_
flower-shaped billiard belongs to the class of dispersing bilyraple.
liards whose hyperbolicity has been proven by Sifid]. When the curvature becomes positive, the point particle
Consequently, it is known that the motion of the point par-can run away from the compact domain, and diffusion oc-
ticle in the elementary Wigner-Seitz cell of our billiard is cyrs. As already explained, at all positive curvatures of the
hyperbolic, in the sense that all orbits are unstable and Ofetal, even if they are very small, the motion of the point
saddle type with nonvanishing Lyapunov exponents, angarticle is fully chaotic and the horizon is finite, hence dif-
time averages are equal to averages over the Liouville equiysion is expected to be normal. The diffusion coefficient
librium invariant measure. starts to increase from zero according to the linear increase
of the curvature of the petal, and related to the fact that the
space between petals also increases.
When the radius of the petal is equal ® =3/4
=0.433, which is the distance between the center of the
Since the system of flower-shaped obstacles is fully chahexagon and the tangent point to the hexagon, the obstacle
otic, and by working in the regime of finite horizon, we may becomes a disk of radiug,_, that is, for this parameter value
expect that diffusion is normal in the sense that the positiorour billiard is precisely the same as the conventional periodic
is asymptotically a Gaussian random variable with a variancéorentz gas. This point corresponds to the curvature
growing linearly in time. Consequently, the diffusion coeffi- =2.309 in Fig. 2.
cient exists and is finitl0-12,16. Indeed, we checked nu- When the radiug of the curvature of the petal decreases
merically that the variance is proportional to time after suf-below R, , the point particle is much more likely to be
ficiently long time evolution. trapped in the space between two obstacles. This appears to
The diffusion coefficienD is given by the Einstein for- be due to the formation of wedges between any two petals of
mula a flower-shaped obstacle.

IIl. CURVATURE DEPENDENCE OF THE DIFFUSION
COEFFICIENT
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The inset of Fig. 3 depicts an enlargement of the curve 02—
showing the fine structure on smaller scales with respect to Machta-Zwanzig ----
curvature. We remark that the apparently continuous fluctua-
tions therein are within the numerical errors, that is, we con-
firmed the convergence of our results within a precision of Qolf
order 10 * by taking an average over ¥anitial conditions.
Unfortunately, with our computational power it is impossible
to check whether this oscillatory behavior persists on even
finer scales.

0.0

IV. MACHTA-ZWANZIG APPROXIMATION FOR

FIG. 4. Diffusion coefficienD (solid line) versus the curvature
DIFFUSION COEFFICIENTS

« of the petal of the flower-shaped obstacle. The solid curve corre-

In Ref.[13], Machta and Zwanzig have obtained a Simmes_ponds to the numerical_ly exact results, while_ the' dotted curve
analytical approximation for the diffusion coefficient of the Yields the Machta-Zwanzig random walk approximation B).
periodic Lorentz gas, which yields asymptotically correct re-
sults in the limit of small gaps between disks. In this casewith 7 being given by Eq.(8) and supplemented by Egs.
the particle is somewhat trapped for a long time in the trian{9)—(11) for the flower-shaped case. As is shown in Fig. 4,
gular regions between three adjacent scatterers. Hence, thee Machta-Zwanzig approximation works very well in the
particle is supposed to loose the memory of its past itineraryicinity of zero curvature of the petal only.
due to the multiple scattering in the trap region, and the
transition probabilities to the neighboring triangular cells are
assumed to be equivalent. As was shown in R&8|, the V. KLAGES-DELLAGO CORRECTIONS OF THE
average rate ! of such transitions can be calculated from MACHTA-ZWANZIG APPROXIMATION
the fraction of phase space available for leaving the trap

divided by the total phase space volume of the trap, leading tR/I In Ref. [8], Klages and Dellago have generalized the

achta-Zwanzig approximation for the standard periodic
r=mwAl(3W), (8) Lorentz gas by taking memory effects of orbits into account.
Their generalization is based on the observation that, except
whereA is the area of the trap and¥ is the width of the gap in the asymptotic limit of narrow gap sizes, the diffusive
between the disks. dynamics is not a simple Markov process, in the sense that
The flower-shaped billiard has similar types of traps as thehere exist nonvanishing dynamical correlations. By mapping
periodic Lorentz gas. Accordingly, the Machta-Zwanzig ap-the orbit of a particle onto a suitable symbolic dynamics they
proximation can be applied to the flower-shaped billiard asiumerically calculated the probabilities to obtain certain
well, and Eq.(8) holds again for the average trapping time. symbol sequences of finite length. Increasing the length of
Hence, we only need to calculate the areas of the trap and thkese symbol sequences yielded systematic corrections of the
gap between the petals from simple geometrical consideiMachta-Zwanzig approximation. In Reff8], two schemes
ations, yielding directly emerging from this approach were discussed, one
N suggesting simple heuristic corrections to the simple random
33 walk model of diffusion Eq(7), and another one employing
T_3h[‘/§h+ Jré=h?] ©  attice gas computer simulations defined by these probabili-
ties. In this section, we apply these two methods to the
and flower-shaped billiard in order to systematically correct the
Machta-Zwanzig approximation. A third scheme starting
W= % —[3h+rZ—h?], (100  from a Green-Kubo formula for diffusion will be discussed
in Sec. VL.
where The Machta-Zwanzig approximation assumes that a par-
. ( A ) ticle jumps from one trap to a neighboring trap situated on

A:

h=2| X2, the hexagonal lattice of traps. However, there exist nonvan-
2\ 4 ishing probabilities that a particle can jump to next nearest
neighbors, or even farther, without collisions. Accordingly,
In the above,r denotes the radius of the curvature of thewe should correct the Machta-Zwanzig approximation for
petal. the flower-shaped billiard by using the probabilitigs; and
The distancd between the centers of the flower-shapedp , of those collisionless flights which lead from one cell
obstacles is 3/3. Assuming that the gap sis is very nar-  directly to its second nearest neighbors, or to its third nearest
row leads to the Machta-Zwanzig random walk approximaneighbors, respectively. The distandesand|, between the
tion for the diffusion coefficient center of a trap to the respective second and third neighbors are

|2
Duz=5-. (12 =31, 1= 7I. (13

(11)
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FIG. 5. Backscattering probabilitg(z) (solid line) versus the FIG. 6. Diffusion coefficients of higher-order approximations

curvaturex of the petal of the flower-shaped obstacle. In the case ofjue to including higher-order backscattering probabilities. The solid
a Markovian process it is equal to 1/3. curve corresponds to numerically exact results, while the other

curves represent approximate solutions.
The diffusion coefficientD.; with corrections due to these
collisionless flights then reads D;=3[1-p(2)](1+2Pcrs+6Pcr2) Dz - (16)
D= (1— B )Dyzt EJF E Higher-order approximations of the diffusion cogfficient, as
cf Per1™ Per2)Pmz ™ Per 7T Pero related to longer symbol sequences and respective probabili-
ties such ap(Irz- - -), can be derived in the same wgg].
=(1+2pci1+6pci2)Duz- (149 For the flower-shaped billiard, respective results are shown
in Fig. 6.
Next we take memory effects of orbits due to backscattering The above correction methods assume that all orbits fol-
into account. For this purpose, orbits are coded by labelingow higher-order Markov processes, where correlations are
the entrance through which a particle enters a trap, dse  present in the form of initial transient times before the vari-
exit to the left of this entrance dsand that to the right as ~ ance becomes linear in time. This dynamics appears to be
Thus, an orbit can be mapped onto a sequence of symbofgore suitably represented in the form of lattice gas simula-
z,1, andr. For examplep(z) is the backscattering probabil- tions on a honeycomb lattice, where the sites of the lattice
ity pps, Which is the probability of the moving particle to represent the traps. Indeed, for the periodic Lorentz gas, such
leave the trap through the same gate where it entered. Thattice gas simulations were performed in & confirming
Machta-Zwanzig approximation assumes thHtz)=p(l) the fast convergence to the numerically exact results. Com-
=p(r)=1/3. However, in generaf(z) is not close to 1/3 as pared to that scheme, the convergence of the intuitive cor-
shown in Fig. 5, because the actual orbits do not loose theirection method described above is, first slower, and, second,
memory during their itineraries. not everywhere converging to the numerically exact results,
A more profound explanation for the complicated func-which is due to the fact that this approach was purely of a
tional form of p(z) may be provided in terms of the theory heuristic nature.
of chaotic scattering: Chaotic scattering systems with mul- We also performed lattice gas simulation in case of the
tiple exit modes typically have fractal phase space boundflower-shaped billiard according to the following prescrip-
aries separating the sets of initial conditidhasing goingto  tion: Particles hop from site to site with frequeney?,
the various exits. However, open systems such as a threerhich is identical to the hopping frequency used in the
disk scatterer of the periodic Lorentz gas possess the eveMachta-Zwanzig approximation. The hopping probabilities
stronger property of being/ada that is, any initial condition  are given by the backscattering probabilit§z) and by those
which is satisfied on the boundary of one exit basin is als@orresponding to respective longer symbol sequences. The
simultaneously satisfied on the boundaries of all the othediffusion coefficient is then obtained from the Einstein for-
exit basind19]. Changing the curvature sensitively affects mula Eqg.(7) in the limit when the variance is becoming
the highly irregular structure of these basin boundaries. Conproportional to time. The correlations in the actual orbits are
sequently, Fig. 5 may be understood as reflecting the topahus systematically and exactly filtered out according to the
logical instabilities of Wada basins under parameter varialength of the symbol sequences.
tion, and as we will now show this is reflected in the In Fig. 7, the results of such higher-order approximations
parameter dependence of the diffusion coefficient. according to lattice gas simulations are shown. One can see
Modifying the Machta-Zwanzig random walk by includ- that the convergence to the numerically exact results is not
ing the backscattering probability(z) we obtain the diffu- only much better than in Fig. 6, but even exact. Strong
sion coefficient memory effects are clearly visible especially after the diffu-
sion coefficient curve takes its maximum. In the previous
[1-p(2)]15 3 heuristic modifications to the simple random walk model, the
BS™ 4(27) :[1_p(z)]§DMZ' (19 dynamics was only modeled for a limited number of time
steps as a Markov process. Figure 6 suggests that correla-
Combining the effects of collisionless flights and back-tions as contained in the symbol sequences are more suitably
scattering yields as a first-order approximation represented by higher-order iterations in the form of lattice
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FIG. 7. Diffusion coefficient as obtained from lattice gas simu- FIG. 8. Parameter dependence of the time-dependent correlation

lations based on higher-order backscattering probabilities. The soIiH"nCtion Cn, see Eq(18), as defined with respect to the symbolic

curve corresponds to numerically exact results, while the otheFlynam'CS on the_hexagonal lattice of traps. At any paramelgr,
curves yield higher-order approximations. decays exponentially related to the fact that the Green-Kubo for-

mula Eq.(17) is a convergent series. The speed of the convergence

imulati H disadvant is that the latti depends on the curvature. Obviously, in the large curvature region
gas simulations. However, a disadvantage Is thal In€ 1atliCgs .orejation function decays more slowly than for small curva-

gas scheme requires a second round of computations, whigh..
is put on top of the previous simulations, by again looking at
the time evolution of an initial ensemble of points. 2

1
Di=y-+5- 2 PlaBy - )l-aBy ), (19
VI. THE GREEN-KUBO FORMULA APPROACH apy -

The main drawbacks of the two methods described abov@ith n>0 being the number of symbols afg(w) given by
were, first, that the heuristic corrections of the Einstein for-Eq. (12), where, againf(afBy- - -) are suitable lattice vec-
mula were not converging exactly to the numerically exactors.
results, and, second, that the lattice gas simulations were The impact of dynamical correlations on the diffusion co-
merely a numerical scheme without being represented in thefficient can now be understood by analyzing the single con-
form of analytical approximations. These deficiencies wereriputions in terms of the correlation functioB, as con-
essentially resolved in Ref14] by the derivation of a Green-  tained in the Green-Kubo formula E€L7). In fully chaotic
Kubo formula which employs the symbolic dynamics on thesystems such as the periodic Lorentz gas and the flower-
hexagonal lattice of traps introduced in Sec. V. The resulshaped billiard, the velocity correlation function decays ex-
reads ponentially, which is in agreement with the results depicted

in Fig. 8. By comparing this figure to Fig. 9 one can learn
1 1 = how the irregularities of the correlation function determine
D= 4_TC°+ 57 > C,. (170 the parameter dependent diffusion coefficient: Let us start
n=1 with the first-order approximation of Eq19), which reads
D;=Dg+Dg[1-3p(2)]. The functional form ofp(z) in
with Fig. 5 thus qualitatively explains the position of the global
maximum of the diffusion coefficient, because at this value
Chi=(j(X0) -] (Xn)) (18)  of the curvature the probability of backscattering is minimal.
Adding up the three-jump contributions coming fro@y,

being the velocity autocorrelation function related to jumlosfurthermore, yields the most important quantitative contribu-

i(x,) on the hexagonal lattice at time stepThese jumps are tions in this region of the curvature. In the region of large
suitably defined in terms of the lattice vectors E(®,(4).

That is, any symbol sequence of an orbit on the hexagonal e R
lattice of traps defines a respective chain of lattice vectors.
The averages indicated by the brackets in @§) are calcu-
lated by weighting the respective scalar products of lattice
vectors with the corresponding conditional probablities
p(aBy---),a,B,ye{l,r,z}. In EQ.(17), 7 is the mean time v/
of free flight between symbol changes, and it is given by Eq. v

Qo0.lf

4th order -+---
(8). Equation(17) is thus the honeycomb lattice analog to the 0.0 L, Othodder—--

Green-Kubo formula derived by Gaspard for the Poincare o1 2 3 4 5 6 7
Birkhoff map of the periodic Lorentz gd4,20]. K

It is easy to see that the first term in E@3.7) yields the FIG. 9. Diffusion coefficients as obtained from the Green-Kubo
Machta-Zwanzig approximation E¢12). Higher-order cor-  formula Eq.(19). The solid curve corresponds to the asymptotic,
rections can then be calculated by defining the hierarchy ofiumerically exact results, while the other curves vyield the respec-
approximations, tive hierarchy of approximations.
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curvature the diffusion coefficient decays monotonically ac-over the velocity correlation function, whose specific param-
cording to the effect of two-hop correlations covered®y  eter dependence can in turn be analyzed step by step. In
However, note the large fluctuations of the correlation funcarticular, this approach yields an exact convergence to the
tion C,, as well as of the diffusion coefficient approximations parameter dependent diffusion coefficient as obtained from
D, in this regime, both indicating the dominant effect of simulations.

long-range higher-order correlations. Studying the detailed Interestingly, when the correlation function decays in
convergence of the approximations depicted in Fig. 9 showtime, the frequency of oscillations as a function of the con-
that correlations due to orbits with longer symbol sequencetol parameter increases. The relation between this decay in
yield irregularities in the parameter dependence of the diffutime and the increase of the frequency of these oscillations

sion coefficients on finer and finer scales. determines the strength of the irregularities on fine scales of
the resulting parameter dependent diffusion coefficient. The
VII. SUMMARY AND CONCLUSION question of the existence of fractal diffusion coefficients in

) _ ) ~billiards such as periodic Lorentz gases with circular or

In this paper, we have introduced a variant of the periodigiower-shaped scatterers might thus be answered by using
Lorentz gas by assigning a flower-shaped geometry to thgreen-Kubo formulas if the respective correlation functions
scatterers. Although both systems are rather similar in theould be evaluated more precisely for large enough times.
sense that they are both fully chaotic and exhibit normaingeed, in Ref[9] the highly irregular diffusion coefficient
diffusion in a certain parameter range, we have found thagf an open billiard in an external field has already been in-
the diffusion coefficient in the flower-shaped geometry isvestigated along these lines by relating the Poin&irhoff
considerably more irregular under parameter variation thagersion of the Green-Kubo formula to fractal Weierstrass
that obtained from circular disks as scatterers. We have an@anctions. The joint efforts compiled in Refg8,9,14 may
lyzed these irregularities by three different methods, whichherefore be considered as first steps towards answering the
all start from correcting the Machta-Zwanzig random walk conjecture of Refg5,6], which suggested a possible univer-
approximation for the diffusion coefficient. All these im- sgjity of fractal diffusion coefficients in low-dimensional
proved approximation schemes use a symbolic dynamicgyly chaotic dynamical systems exhibiting some spatial pe-

which maps the orbits of moving particles to symbol se-rigdicity, for the case of chaotic Hamiltonian dynamical sys-
quences according to traps situated on a hexagonal latticms such as particle billiards.

We have discussed the convergence of these different ap-
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